Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38405985

RESUMO

A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.

2.
Nature ; 615(7950): 158-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634707

RESUMO

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Evasão da Resposta Imune , Imunoterapia , Proteínas Serina-Treonina Quinases , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Organoides , Fatores de Necrose Tumoral/imunologia , Interferon gama/imunologia , Esferoides Celulares , Caspases , Janus Quinases , Fatores de Transcrição STAT
3.
Cell Rep Med ; 3(10): 100779, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36208629

RESUMO

Mechanisms of neutrophil involvement in severe coronavirus disease 2019 (COVID-19) remain incompletely understood. Here, we collect longitudinal blood samples from 306 hospitalized COVID-19+ patients and 86 controls and perform bulk RNA sequencing of enriched neutrophils, plasma proteomics, and high-throughput antibody profiling to investigate relationships between neutrophil states and disease severity. We identify dynamic switches between six distinct neutrophil subtypes. At days 3 and 7 post-hospitalization, patients with severe disease display a granulocytic myeloid-derived suppressor cell-like gene expression signature, while patients with resolving disease show a neutrophil progenitor-like signature. Humoral responses are identified as potential drivers of neutrophil effector functions, with elevated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G1 (IgG1)-to-IgA1 ratios in plasma of severe patients who survived. In vitro experiments confirm that while patient-derived IgG antibodies induce phagocytosis in healthy donor neutrophils, IgA antibodies predominantly induce neutrophil cell death. Overall, our study demonstrates a dysregulated myelopoietic response in severe COVID-19 and a potential role for IgA-dominant responses contributing to mortality.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Neutrófilos , Imunoglobulina A , Imunoglobulina G , Fenótipo
4.
Nat Commun ; 12(1): 4851, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381047

RESUMO

Pathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf 'decision-sensing-system' controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3'UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape.


Assuntos
Quimiocina CXCL10/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Regiões 3' não Traduzidas , Quimiocina CXCL10/genética , Proteína DEAD-box 58/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Vesículas Extracelulares/metabolismo , Interações Hospedeiro-Parasita , Humanos , Estágios do Ciclo de Vida , Malária Falciparum/imunologia , Monócitos/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Biossíntese de Proteínas , RNA de Protozoário/metabolismo , Receptores Imunológicos/metabolismo , Ribossomos/metabolismo , Células THP-1
5.
Nat Commun ; 12(1): 1172, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608523

RESUMO

Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins ß-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth.


Assuntos
Transporte Biológico/fisiologia , Eritrócitos/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/citologia , Eritrócitos/parasitologia , Humanos , Malária Falciparum/parasitologia , Proteínas de Membrana/metabolismo , Fosforilação , Plasmodium falciparum/crescimento & desenvolvimento , Proteômica
6.
J Cell Sci ; 133(20)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093229

RESUMO

Integrin adhesions are a structurally and functionally diverse family of transmembrane, multi-protein complexes that link the intracellular cytoskeleton to the extracellular matrix (ECM). The different members of this family, including focal adhesions (FAs), focal complexes, fibrillar adhesions, podosomes and invadopodia, contain many shared scaffolding and signaling 'adhesome' components, as well as distinct molecules that perform specific functions, unique to each adhesion form. In this Hypothesis, we address the pivotal roles of mechanical forces, generated by local actin polymerization or actomyosin-based contractility, in the formation, maturation and functionality of two members of the integrin adhesions family, namely FAs and invadopodia, which display distinct structures and functional properties. FAs are robust and stable ECM contacts, associated with contractile stress fibers, while invadopodia are invasive adhesions that degrade the underlying matrix and penetrate into it. We discuss here the mechanisms, whereby these two types of adhesion utilize a similar molecular machinery to drive very different - often opposing cellular activities, and hypothesize that early stages of FAs and invadopodia assembly use similar biomechanical principles, whereas maturation of the two structures, and their 'adhesive' and 'invasive' functionalities require distinct sources of biomechanical reinforcement.


Assuntos
Adesões Focais , Podossomos , Adesão Celular , Matriz Extracelular , Integrinas/genética
7.
Nat Cell Biol ; 22(11): 1346-1356, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046882

RESUMO

Cardiomyocyte loss after injury results in adverse remodelling and fibrosis, inevitably leading to heart failure. The ERBB2-Neuregulin and Hippo-YAP signalling pathways are key mediators of heart regeneration, yet the crosstalk between them is unclear. We demonstrate that transient overexpression of activated ERBB2 in cardiomyocytes (OE CMs) promotes cardiac regeneration in a heart failure model. OE CMs present an epithelial-mesenchymal transition (EMT)-like regenerative response manifested by cytoskeletal remodelling, junction dissolution, migration and extracellular matrix turnover. We identified YAP as a critical mediator of ERBB2 signalling. In OE CMs, YAP interacts with nuclear-envelope and cytoskeletal components, reflecting an altered mechanical state elicited by ERBB2. We identified two YAP-activating phosphorylations on S352 and S274 in OE CMs, which peak during metaphase, that are ERK dependent and Hippo independent. Viral overexpression of YAP phospho-mutants dampened the proliferative competence of OE CMs. Together, we reveal a potent ERBB2-mediated YAP mechanotransduction signalling, involving EMT-like characteristics, resulting in robust heart regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptor ErbB-2/metabolismo , Regeneração , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Mecanotransdução Celular , Camundongos Transgênicos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Fosforilação , Receptor ErbB-2/genética , Proteínas de Sinalização YAP
8.
Expert Opin Ther Targets ; 24(11): 1065-1078, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32962465

RESUMO

INTRODUCTION: TANK-binding kinase 1 (TBK1) is a Ser/Thr kinase with a central role in coordinating the cellular response to invading pathogens and regulating key inflammatory signaling cascades. While intact TBK1 signaling is required for successful anti-viral signaling, dysregulated TBK1 signaling has been linked to a variety of pathophysiologic conditions, including cancer. Several lines of evidence support a role for TBK1 in cancer pathogenesis, but the specific roles and regulation of TBK1 remain incompletely understood. A key challenge is the diversity of cellular processes that are regulated by TBK1, including inflammation, cell cycle, autophagy, energy homeostasis, and cell death. Nevertheless, evidence from pre-clinical cancer models suggests that targeting TBK1 may be an effective strategy for anti-cancer therapy in specific settings. AREAS COVERED: This review provides an overview of the roles and regulation of TBK1 with a focus on cancer pathogenesis and drug targeting of TBK1 as an anti-cancer strategy. Relevant literature was derived from a PubMed search encompassing studies from 1999 to 2020. EXPERT OPINION: TBK1 is emerging as a potential target for anti-cancer therapy. Inhibition of TBK1 alone may be insufficient to restrain the growth of most cancers; hence, combination strategies will likely be necessary. Improved understanding of tumor-intrinsic and tumor-extrinsic TBK1 signaling will inform novel therapeutic strategies.


Assuntos
Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
9.
Artigo em Inglês | MEDLINE | ID: mdl-32850481

RESUMO

Leishmania infection causes considerable human morbidity and may develop into a deadly visceral form in endemic regions. The parasite infects macrophages where they can replicate intracellularly. Furthermore, they modulate host immune responses by using virulence factors (lipophosphoglycan, glycoprotein-63, and others) that promote survival inside the cells. Extracellular vesicles (EVs) released by parasites are important for cell-cell communication in the proinflammatory milieu modulating the establishment of infection. However, information on the ability of EVs from different Leishmania species to modulate inflammatory responses is scarce, especially from those species causing different clinical manifestations (visceral vs. cutaneous). The purpose of this study was to compare macrophage activation using EVs from three Leishmania species from New World including L. infantum, L. braziliensis, and L. amazonensis. EVs were released from promastigote forms, purified by ultracentrifugation and quantitated by Nanoparticle Tracking Analysis (NTA) prior to murine macrophage exposure. NTA analysis did not show any differences in the EV sizes among the strains. EVs from L. braziliensis and L. infantum failed to induce a pro-inflammatory response. EVs from both L. infantum WT and LPG-deficient mutant (LPG-KO) did not show any differences in their interaction with macrophages, suggesting that LPG solely was not determinant for activation. On the other hand, EVs from L. amazonensis were immunomodulatory inducing NO, TNF-α, IL-6, and IL-10 via TLR4 and TLR2. To determine whether such activation was related to NF-κB p65 translocation, THP-1 macrophage cells were exposed to EVs. In the same way, only EVs from L. amazonensis exhibited a highly percentage of cells positive for NF-κB. Our results suggest an important role of EVs in determining the pattern of immune response depending on the parasite species. For L. infantum, LPG was not determinant for the activation.


Assuntos
Vesículas Extracelulares , Leishmania , Parasitos , Animais , Humanos , Imunidade , Camundongos , NF-kappa B , Receptores Toll-Like
10.
Cancer Res ; 79(10): 2634-2648, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30914429

RESUMO

The invasive phenotype of metastatic cancer cells is accompanied by the formation of actin-rich invadopodia, which adhere to the extracellular matrix and degrade it. In this study, we explored the role of the tyrosine kinome in the formation of invadopodia in metastatic melanoma cells. Using a microscopy-based siRNA screen, we identified a series of regulators, the knockdown of which either suppresses (e.g., TYK2, IGFR1, ERBB3, TYRO3, FES, ALK, PTK7) or enhances (e.g., ABL2, AXL, CSK) invadopodia formation and function. Notably, the receptor tyrosine kinase AXL displayed a dual regulatory function, where both depletion or overexpression enhanced invadopodia formation and activity. This apparent contradiction was attributed to the capacity of AXL to directly stimulate invadopodia, yet its suppression upregulates the ERBB3 signaling pathway, which can also activate core invadopodia regulators and enhance invadopodia function. Bioinformatic analysis of multiple melanoma cell lines points to an inverse expression pattern of AXL and ERBB3. High expression of AXL in melanoma cells is associated with high expression of invadopodia components and an invasive phenotype. These results provide new insights into the complexity of metastasis-promoting mechanisms and suggest that targeting of multiple invadopodia signaling networks may serve as a potential anti-invasion therapy in melanoma. SIGNIFICANCE: These findings uncover a unique interplay between AXL and ERBB3 in invadopodia regulation that points to the need for combined therapy in order to prevent invadopodia-mediated metastasis in melanoma.


Assuntos
Melanoma/metabolismo , Melanoma/patologia , Podossomos/metabolismo , Podossomos/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-3/metabolismo , Actinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Células HEK293 , Humanos , Invasividade Neoplásica/patologia , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Receptor Tirosina Quinase Axl
11.
Exp Cell Res ; 343(1): 82-88, 2016 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-26873115

RESUMO

In this article, we discuss the complex involvement of a Rho-family GTPase, Rac1, in cell migration and in invadopodia-mediated matrix degradation. We discuss the involvement of invadopodia in invasive cell migration, and their capacity to promote cancer metastasis. Considering the regulation of invadopodia formation, we describe studies that demonstrate the role of Rac1 in the metastatic process, and the suggestion that this effect is attributable to the capacity of Rac1 to promote invadopodia formation. This notion is demonstrated here by showing that knockdown of Rac1 in melanoma cells expressing a wild-type form of this GTPase, reduces invadopodia-dependent matrix degradation. Interestingly, we also show that excessive activity of Rac1, displayed by the P29S, hyperactive, "fast cycling" mutant of Rac1, which is present in 5-10% of melanoma tumors, inhibits invadopodia function. Moreover, knockdown of this hyperactive mutant enhanced matrix degradation, indicating that excessive Rac1 activity by this mutant can negatively regulate invadopodia formation and function.


Assuntos
Melanoma/fisiopatologia , Mutação , Podossomos/patologia , Proteínas rac1 de Ligação ao GTP/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Células Cultivadas , Humanos
12.
Sci Rep ; 5: 9466, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25820462

RESUMO

Invadopodia are actin-rich membrane protrusions through which cells adhere to the extracellular matrix and degrade it. In this study, we explored the mechanical interactions of invadopodia in melanoma cells, using a combination of correlative light and electron microscopy. We show here that the core actin bundle of most invadopodia interacts with integrin-containing matrix adhesions at its basal end, extends through a microtubule-rich cytoplasm, and at its apical end, interacts with the nuclear envelope and indents it. Abolishment of invadopodia by microtubules or src inhibitors leads to the disappearance of these nuclear indentations. Based on the indentation profile and the viscoelastic properties of the nucleus, the force applied by invadopodia is estimated to be in the nanoNewton range. We further show that knockdown of the LINC complex components nesprin 2 or SUN1 leads to a substantial increase in the prominence of the adhesion domains at the opposite end of the invadopodia. We discuss this unexpected, long-range mechanical interplay between the apical and basal domains of invadopodia, and its possible involvement in the penetration of invadopodia into the matrix.


Assuntos
Actinas/metabolismo , Melanoma/patologia , Microtúbulos/ultraestrutura , Podossomos/ultraestrutura , Actinas/ultraestrutura , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestrutura , Humanos , Melanoma/metabolismo , Microtúbulos/metabolismo , Podossomos/patologia
13.
Cell Adh Migr ; 8(3): 215-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714132

RESUMO

Invadopodia are actin-based protrusions of the plasma membrane that penetrate into the extracellular matrix (ECM), and enzymatically degrade it. Invadopodia and podosomes, often referred to, collectively, as "invadosomes," are actin-based membrane protrusions that facilitate matrix remodeling and cell invasion across tissues, processes that occur under specific physiological conditions such as bone remodeling, as well as under pathological states such as bone, immune disorders, and cancer metastasis. In this review, we specifically focus on the functional architecture of invadopodia in cancer cells; we discuss here three functional domains of invadopodia responsible for the metalloproteinase-based degradation of the ECM, the cytoskeleton-based mechanical penetration into the matrix, and the integrin adhesome-based adhesion to the ECM. We will describe the structural and molecular organization of each domain and the cross-talk between them during the invasion process.


Assuntos
Extensões da Superfície Celular/metabolismo , Metástase Neoplásica/patologia , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular/fisiologia , Extensões da Superfície Celular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Metaloproteinases da Matriz/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA